Metamath Proof Explorer


Theorem br2ndeq

Description: Uniqueness condition for the binary relation 2nd . (Contributed by Scott Fenton, 11-Apr-2014) (Proof shortened by Mario Carneiro, 3-May-2015)

Ref Expression
Hypotheses br1steq.1 AV
br1steq.2 BV
Assertion br2ndeq AB2ndCC=B

Proof

Step Hyp Ref Expression
1 br1steq.1 AV
2 br1steq.2 BV
3 br2ndeqg AVBVAB2ndCC=B
4 1 2 3 mp2an AB2ndCC=B