Metamath Proof Explorer


Theorem brsnop

Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023)

Ref Expression
Assertion brsnop A V B W X A B Y X = A Y = B

Proof

Step Hyp Ref Expression
1 df-br X A B Y X Y A B
2 opex X Y V
3 2 elsn X Y A B X Y = A B
4 opthg2 A V B W X Y = A B X = A Y = B
5 3 4 bitrid A V B W X Y A B X = A Y = B
6 1 5 bitrid A V B W X A B Y X = A Y = B