Metamath Proof Explorer


Theorem cbvprodi

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprodi.1 _kB
cbvprodi.2 _jC
cbvprodi.3 j=kB=C
Assertion cbvprodi jAB=kAC

Proof

Step Hyp Ref Expression
1 cbvprodi.1 _kB
2 cbvprodi.2 _jC
3 cbvprodi.3 j=kB=C
4 nfcv _kA
5 nfcv _jA
6 3 4 5 1 2 cbvprod jAB=kAC