Metamath Proof Explorer


Theorem cdlemk14-2N

Description: Part of proof of Lemma K of Crawley p. 118. Line 19 on p. 119. Q , C are k_2, f_2. (Contributed by NM, 1-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk2.b B=BaseK
cdlemk2.l ˙=K
cdlemk2.j ˙=joinK
cdlemk2.m ˙=meetK
cdlemk2.a A=AtomsK
cdlemk2.h H=LHypK
cdlemk2.t T=LTrnKW
cdlemk2.r R=trLKW
cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk2.q Q=SC
Assertion cdlemk14-2N KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNP˙QP˙RFC-1

Proof

Step Hyp Ref Expression
1 cdlemk2.b B=BaseK
2 cdlemk2.l ˙=K
3 cdlemk2.j ˙=joinK
4 cdlemk2.m ˙=meetK
5 cdlemk2.a A=AtomsK
6 cdlemk2.h H=LHypK
7 cdlemk2.t T=LTrnKW
8 cdlemk2.r R=trLKW
9 cdlemk2.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk2.q Q=SC
11 simp11 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WKHL
12 simp12 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WWH
13 11 12 jca KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WKHLWH
14 simp21 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WFT
15 simp22 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WCT
16 simp23 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNT
17 simp33 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WPA¬P˙W
18 simp13 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WRF=RN
19 simp32l KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WFIB
20 simp32r KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WCIB
21 simp31 KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WRCRF
22 1 2 3 4 5 6 7 8 9 10 cdlemk14 KHLWHFTCTNTPA¬P˙WRF=RNFIBCIBRCRFNP˙QP˙RFC-1
23 13 14 15 16 17 18 19 20 21 22 syl333anc KHLWHRF=RNFTCTNTRCRFFIBCIBPA¬P˙WNP˙QP˙RFC-1