Metamath Proof Explorer


Theorem ceqsal

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid df-clab . (Revised by Wolf Lammen, 23-Jan-2025)

Ref Expression
Hypotheses ceqsal.1 xψ
ceqsal.2 AV
ceqsal.3 x=Aφψ
Assertion ceqsal xx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsal.1 xψ
2 ceqsal.2 AV
3 ceqsal.3 x=Aφψ
4 1 19.23 xx=Aψxx=Aψ
5 3 pm5.74i x=Aφx=Aψ
6 5 albii xx=Aφxx=Aψ
7 2 isseti xx=A
8 7 a1bi ψxx=Aψ
9 4 6 8 3bitr4i xx=Aφψ