Metamath Proof Explorer


Theorem ceqsalALT

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab . (Contributed by NM, 18-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ceqsal.1 xψ
ceqsal.2 AV
ceqsal.3 x=Aφψ
Assertion ceqsalALT xx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsal.1 xψ
2 ceqsal.2 AV
3 ceqsal.3 x=Aφψ
4 1 3 ceqsalg AVxx=Aφψ
5 2 4 ax-mp xx=Aφψ