Metamath Proof Explorer


Theorem ceqsalv

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid ax-12 . (Revised by SN, 8-Sep-2024)

Ref Expression
Hypotheses ceqsalv.1 AV
ceqsalv.2 x=Aφψ
Assertion ceqsalv xx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsalv.1 AV
2 ceqsalv.2 x=Aφψ
3 19.23v xx=Aψxx=Aψ
4 2 pm5.74i x=Aφx=Aψ
5 4 albii xx=Aφxx=Aψ
6 1 isseti xx=A
7 6 a1bi ψxx=Aψ
8 3 5 7 3bitr4i xx=Aφψ