Metamath Proof Explorer


Theorem ceqsralvOLD

Description: Obsolete version of ceqsalv as of 8-Sep-2024. (Contributed by NM, 21-Jun-2013) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ceqsralv.2 x=Aφψ
Assertion ceqsralvOLD ABxBx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsralv.2 x=Aφψ
2 nfv xψ
3 1 ax-gen xx=Aφψ
4 ceqsralt xψxx=AφψABxBx=Aφψ
5 2 3 4 mp3an12 ABxBx=Aφψ