Metamath Proof Explorer


Theorem clwwlkfv

Description: Lemma 2 for clwwlkf1o : the value of function F . (Contributed by Alexander van der Vekens, 28-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses clwwlkf1o.d D=wNWWalksNG|lastSw=w0
clwwlkf1o.f F=tDtprefixN
Assertion clwwlkfv WDFW=WprefixN

Proof

Step Hyp Ref Expression
1 clwwlkf1o.d D=wNWWalksNG|lastSw=w0
2 clwwlkf1o.f F=tDtprefixN
3 oveq1 t=WtprefixN=WprefixN
4 ovex WprefixNV
5 3 2 4 fvmpt WDFW=WprefixN