Metamath Proof Explorer


Theorem cnfldtopon

Description: The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis cnfldtopn.1 J=TopOpenfld
Assertion cnfldtopon JTopOn

Proof

Step Hyp Ref Expression
1 cnfldtopn.1 J=TopOpenfld
2 cnfldtps fldTopSp
3 cnfldbas =Basefld
4 3 1 istps fldTopSpJTopOn
5 2 4 mpbi JTopOn