Metamath Proof Explorer


Theorem decmulnc

Description: The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021)

Ref Expression
Hypotheses decmulnc.n N0
decmulnc.a A0
decmulnc.b B0
Assertion decmulnc Could not format assertion : No typesetting found for |- ( N x. ; A B ) = ; ( N x. A ) ( N x. B ) with typecode |-

Proof

Step Hyp Ref Expression
1 decmulnc.n N0
2 decmulnc.a A0
3 decmulnc.b B0
4 eqid Could not format ; A B = ; A B : No typesetting found for |- ; A B = ; A B with typecode |-
5 1 3 nn0mulcli NB0
6 0nn0 00
7 1 2 nn0mulcli NA0
8 7 nn0cni NA
9 8 addridi NA+0=NA
10 5 dec0h Could not format ( N x. B ) = ; 0 ( N x. B ) : No typesetting found for |- ( N x. B ) = ; 0 ( N x. B ) with typecode |-
11 1 2 3 4 5 6 9 10 decmul2c Could not format ( N x. ; A B ) = ; ( N x. A ) ( N x. B ) : No typesetting found for |- ( N x. ; A B ) = ; ( N x. A ) ( N x. B ) with typecode |-