Metamath Proof Explorer


Definition df-lub

Description: Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets s for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011) (Revised by NM, 6-Sep-2018)

Ref Expression
Assertion df-lub lub=pVs𝒫BasepιxBasep|ysypxzBasepysypzxpzs|∃!xBasepysypxzBasepysypzxpz

Detailed syntax breakdown

Step Hyp Ref Expression
0 club classlub
1 vp setvarp
2 cvv classV
3 vs setvars
4 cbs classBase
5 1 cv setvarp
6 5 4 cfv classBasep
7 6 cpw class𝒫Basep
8 vx setvarx
9 vy setvary
10 3 cv setvars
11 9 cv setvary
12 cple classle
13 5 12 cfv classp
14 8 cv setvarx
15 11 14 13 wbr wffypx
16 15 9 10 wral wffysypx
17 vz setvarz
18 17 cv setvarz
19 11 18 13 wbr wffypz
20 19 9 10 wral wffysypz
21 14 18 13 wbr wffxpz
22 20 21 wi wffysypzxpz
23 22 17 6 wral wffzBasepysypzxpz
24 16 23 wa wffysypxzBasepysypzxpz
25 24 8 6 crio classιxBasep|ysypxzBasepysypzxpz
26 3 7 25 cmpt classs𝒫BasepιxBasep|ysypxzBasepysypzxpz
27 24 8 6 wreu wff∃!xBasepysypxzBasepysypzxpz
28 27 3 cab classs|∃!xBasepysypxzBasepysypzxpz
29 26 28 cres classs𝒫BasepιxBasep|ysypxzBasepysypzxpzs|∃!xBasepysypxzBasepysypzxpz
30 1 2 29 cmpt classpVs𝒫BasepιxBasep|ysypxzBasepysypzxpzs|∃!xBasepysypxzBasepysypzxpz
31 0 30 wceq wfflub=pVs𝒫BasepιxBasep|ysypxzBasepysypzxpzs|∃!xBasepysypxzBasepysypzxpz