Metamath Proof Explorer


Definition df-pell1234qr

Description: Define the general solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion df-pell1234qr Pell1234QR=xy|zwy=z+xwz2xw2=1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpell1234qr classPell1234QR
1 vx setvarx
2 cn class
3 csquarenn class
4 2 3 cdif class
5 vy setvary
6 cr class
7 vz setvarz
8 cz class
9 vw setvarw
10 5 cv setvary
11 7 cv setvarz
12 caddc class+
13 csqrt class
14 1 cv setvarx
15 14 13 cfv classx
16 cmul class×
17 9 cv setvarw
18 15 17 16 co classxw
19 11 18 12 co classz+xw
20 10 19 wceq wffy=z+xw
21 cexp class^
22 c2 class2
23 11 22 21 co classz2
24 cmin class
25 17 22 21 co classw2
26 14 25 16 co classxw2
27 23 26 24 co classz2xw2
28 c1 class1
29 27 28 wceq wffz2xw2=1
30 20 29 wa wffy=z+xwz2xw2=1
31 30 9 8 wrex wffwy=z+xwz2xw2=1
32 31 7 8 wrex wffzwy=z+xwz2xw2=1
33 32 5 6 crab classy|zwy=z+xwz2xw2=1
34 1 4 33 cmpt classxy|zwy=z+xwz2xw2=1
35 0 34 wceq wffPell1234QR=xy|zwy=z+xwz2xw2=1