Metamath Proof Explorer


Definition df-sn

Description: Define the singleton of a class. Definition 7.1 of Quine p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of _V , see snprc . For an alternate definition see dfsn2 . (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion df-sn A=x|x=A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 0 csn classA
2 vx setvarx
3 2 cv setvarx
4 3 0 wceq wffx=A
5 4 2 cab classx|x=A
6 1 5 wceq wffA=x|x=A