Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Subspaces and projections Subspace sum, span, lattice join, lattice supremum df-span  
				
		 
		
			
		 
		Description:   Define the linear span of a subset of Hilbert space.  Definition of span
       in Schechter  p. 276.  See spanval  for its value.  (Contributed by NM , 2-Jun-2004)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-span   ⊢   span  =    x  ∈   𝒫   ℋ    ⟼   ⋂   y  ∈  S  ℋ |   x  ⊆  y                
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cspn  class  span    
						
							1 
								
							 
							vx  setvar  x    
						
							2 
								
							 
							chba  class   ℋ    
						
							3 
								2 
							 
							cpw  class   𝒫   ℋ      
						
							4 
								
							 
							vy  setvar  y    
						
							5 
								
							 
							csh  class  S  ℋ    
						
							6 
								1 
							 
							cv  setvar  x    
						
							7 
								4 
							 
							cv  setvar  y    
						
							8 
								6  7 
							 
							wss  wff   x  ⊆  y      
						
							9 
								8  4  5 
							 
							crab  class   y  ∈  S  ℋ |   x  ⊆  y        
						
							10 
								9 
							 
							cint  class   ⋂   y  ∈  S  ℋ |   x  ⊆  y          
						
							11 
								1  3  10 
							 
							cmpt  class    x  ∈   𝒫   ℋ    ⟼   ⋂   y  ∈  S  ℋ |   x  ⊆  y             
						
							12 
								0  11 
							 
							wceq  wff   span  =    x  ∈   𝒫   ℋ    ⟼   ⋂   y  ∈  S  ℋ |   x  ⊆  y