Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Curry and uncurry df-unc  
				
		 
		
			
		 
		Description:   Define the uncurrying of F  , which takes a function producing
       functions, and transforms it into a two-argument function.  (Contributed by Mario Carneiro , 7-Jan-2017) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-unc   ⊢   uncurry  F =   x  y z |  y   F  ⁡  x   z        
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cF  class  F    
						
							1 
								0 
							 
							cunc  class  uncurry  F    
						
							2 
								
							 
							vx  setvar  x    
						
							3 
								
							 
							vy  setvar  y    
						
							4 
								
							 
							vz  setvar  z    
						
							5 
								3 
							 
							cv  setvar  y    
						
							6 
								2 
							 
							cv  setvar  x    
						
							7 
								6  0 
							 
							cfv  class   F  ⁡  x     
						
							8 
								4 
							 
							cv  setvar  z    
						
							9 
								5  8  7 
							 
							wbr  wff  y   F  ⁡  x   z    
						
							10 
								9  2  3  4 
							 
							coprab  class   x  y z |  y   F  ⁡  x   z     
						
							11 
								1  10 
							 
							wceq  wff   uncurry  F =   x  y z |  y   F  ⁡  x   z