Metamath Proof Explorer


Theorem dfn2

Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007) (Proof shortened by Mario Carneiro, 13-Feb-2013)

Ref Expression
Assertion dfn2 =00

Proof

Step Hyp Ref Expression
1 df-n0 0=0
2 1 difeq1i 00=00
3 difun2 00=0
4 0nnn ¬0
5 difsn ¬00=
6 4 5 ax-mp 0=
7 2 3 6 3eqtrri =00