Metamath Proof Explorer


Theorem dfnul3OLD

Description: Obsolete version of dfnul4 as of 23-Sep-2024. (Contributed by NM, 25-Mar-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfnul3OLD =xA|¬xA

Proof

Step Hyp Ref Expression
1 pm3.24 ¬xA¬xA
2 equid x=x
3 1 2 2th ¬xA¬xAx=x
4 3 con1bii ¬x=xxA¬xA
5 4 abbii x|¬x=x=x|xA¬xA
6 dfnul2 =x|¬x=x
7 df-rab xA|¬xA=x|xA¬xA
8 5 6 7 3eqtr4i =xA|¬xA