Metamath Proof Explorer


Theorem dftrpred2

Description: A definition of the transitive predecessors of a class in terms of indexed union. (Contributed by Scott Fenton, 28-Apr-2012)

Ref Expression
Assertion dftrpred2 TrPred R A X = i ω rec a V y a Pred R A y Pred R A X ω i

Proof

Step Hyp Ref Expression
1 df-trpred TrPred R A X = ran rec a V y a Pred R A y Pred R A X ω
2 frfnom rec a V y a Pred R A y Pred R A X ω Fn ω
3 fniunfv rec a V y a Pred R A y Pred R A X ω Fn ω i ω rec a V y a Pred R A y Pred R A X ω i = ran rec a V y a Pred R A y Pred R A X ω
4 2 3 ax-mp i ω rec a V y a Pred R A y Pred R A X ω i = ran rec a V y a Pred R A y Pred R A X ω
5 1 4 eqtr4i TrPred R A X = i ω rec a V y a Pred R A y Pred R A X ω i