Metamath Proof Explorer


Theorem dfxp3

Description: Define the Cartesian product of three classes. Compare df-xp . (Contributed by FL, 6-Nov-2013) (Proof shortened by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion dfxp3 A×B×C=xyz|xAyBzC

Proof

Step Hyp Ref Expression
1 biidd u=xyzCzC
2 1 dfoprab4 uz|uA×BzC=xyz|xAyBzC
3 df-xp A×B×C=uz|uA×BzC
4 df-3an xAyBzCxAyBzC
5 4 oprabbii xyz|xAyBzC=xyz|xAyBzC
6 2 3 5 3eqtr4i A×B×C=xyz|xAyBzC