Metamath Proof Explorer


Theorem difsymssdifssd

Description: If the symmetric difference is contained in C , so is one of the differences. (Contributed by AV, 17-Aug-2022)

Ref Expression
Hypothesis difsymssdifssd.1 φABC
Assertion difsymssdifssd φABC

Proof

Step Hyp Ref Expression
1 difsymssdifssd.1 φABC
2 difsssymdif ABAB
3 2 1 sstrid φABC