Metamath Proof Explorer


Theorem divcan1zi

Description: A cancellation law for division. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
Assertion divcan1zi B0ABB=A

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divcan1 ABB0ABB=A
4 1 2 3 mp3an12 B0ABB=A