Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
domen2
Next ⟩
sdomen1
Metamath Proof Explorer
Ascii
Unicode
Theorem
domen2
Description:
Equality-like theorem for equinumerosity and dominance.
(Contributed by
NM
, 8-Nov-2003)
Ref
Expression
Assertion
domen2
⊢
A
≈
B
→
C
≼
A
↔
C
≼
B
Proof
Step
Hyp
Ref
Expression
1
domentr
⊢
C
≼
A
∧
A
≈
B
→
C
≼
B
2
1
ancoms
⊢
A
≈
B
∧
C
≼
A
→
C
≼
B
3
ensym
⊢
A
≈
B
→
B
≈
A
4
domentr
⊢
C
≼
B
∧
B
≈
A
→
C
≼
A
5
4
ancoms
⊢
B
≈
A
∧
C
≼
B
→
C
≼
A
6
3
5
sylan
⊢
A
≈
B
∧
C
≼
B
→
C
≼
A
7
2
6
impbida
⊢
A
≈
B
→
C
≼
A
↔
C
≼
B