Metamath Proof Explorer


Theorem e012

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e012.1 φ
e012.2 ψχ
e012.3 ψ,θτ
e012.4 φχτη
Assertion e012 ψ,θη

Proof

Step Hyp Ref Expression
1 e012.1 φ
2 e012.2 ψχ
3 e012.3 ψ,θτ
4 e012.4 φχτη
5 1 vd01 ψφ
6 5 2 3 4 e112 ψ,θη