Metamath Proof Explorer


Theorem e03

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e03.1 φ
e03.2 ψ,χ,θτ
e03.3 φτη
Assertion e03 ψ,χ,θη

Proof

Step Hyp Ref Expression
1 e03.1 φ
2 e03.2 ψ,χ,θτ
3 e03.3 φτη
4 1 vd03 ψ,χ,θφ
5 4 2 3 e33 ψ,χ,θη