Metamath Proof Explorer


Theorem e12

Description: A virtual deduction elimination rule (see sylsyld ). (Contributed by Alan Sare, 21-Apr-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e12.1 φψ
e12.2 φ,χθ
e12.3 ψθτ
Assertion e12 φ,χτ

Proof

Step Hyp Ref Expression
1 e12.1 φψ
2 e12.2 φ,χθ
3 e12.3 ψθτ
4 1 vd12 φ,χψ
5 4 2 3 e22 φ,χτ