Metamath Proof Explorer


Theorem e21an

Description: Conjunction form of e21 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e21an.1 φ,ψχ
e21an.2 φθ
e21an.3 χθτ
Assertion e21an φ,ψτ

Proof

Step Hyp Ref Expression
1 e21an.1 φ,ψχ
2 e21an.2 φθ
3 e21an.3 χθτ
4 3 ex χθτ
5 1 2 4 e21 φ,ψτ