Metamath Proof Explorer


Theorem e32an

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e32an.1 φ,ψ,χθ
e32an.2 φ,ψτ
e32an.3 θτη
Assertion e32an φ,ψ,χη

Proof

Step Hyp Ref Expression
1 e32an.1 φ,ψ,χθ
2 e32an.2 φ,ψτ
3 e32an.3 θτη
4 3 ex θτη
5 1 2 4 e32 φ,ψ,χη