Metamath Proof Explorer


Theorem e33an

Description: Conjunction form of e33 . (Contributed by Alan Sare, 15-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e33an.1 φ,ψ,χθ
e33an.2 φ,ψ,χτ
e33an.3 θτη
Assertion e33an φ,ψ,χη

Proof

Step Hyp Ref Expression
1 e33an.1 φ,ψ,χθ
2 e33an.2 φ,ψ,χτ
3 e33an.3 θτη
4 3 ex θτη
5 1 2 4 e33 φ,ψ,χη