Metamath Proof Explorer


Theorem eceq1d

Description: Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019)

Ref Expression
Hypothesis eceq1d.1 φA=B
Assertion eceq1d φAC=BC

Proof

Step Hyp Ref Expression
1 eceq1d.1 φA=B
2 eceq1 A=BAC=BC
3 1 2 syl φAC=BC