Metamath Proof Explorer


Theorem ecexg

Description: An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995)

Ref Expression
Assertion ecexg RBARV

Proof

Step Hyp Ref Expression
1 df-ec AR=RA
2 imaexg RBRAV
3 1 2 eqeltrid RBARV