Metamath Proof Explorer


Theorem ee123

Description: e123 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee123.1 φψ
ee123.2 φχθ
ee123.3 φχτη
ee123.4 ψθηζ
Assertion ee123 φχτζ

Proof

Step Hyp Ref Expression
1 ee123.1 φψ
2 ee123.2 φχθ
3 ee123.3 φχτη
4 ee123.4 ψθηζ
5 1 a1d φτψ
6 5 a1d φχτψ
7 2 a1dd φχτθ
8 6 7 3 4 ee333 φχτζ