Metamath Proof Explorer


Theorem ee23an

Description: e23an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee23an.1 φψχ
ee23an.2 φψθτ
ee23an.3 χτη
Assertion ee23an φψθη

Proof

Step Hyp Ref Expression
1 ee23an.1 φψχ
2 ee23an.2 φψθτ
3 ee23an.3 χτη
4 1 a1dd φψθχ
5 4 2 3 ee33an φψθη