Metamath Proof Explorer


Theorem ee31an

Description: e31an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee31an.1 φψχθ
ee31an.2 φτ
ee31an.3 θτη
Assertion ee31an φψχη

Proof

Step Hyp Ref Expression
1 ee31an.1 φψχθ
2 ee31an.2 φτ
3 ee31an.3 θτη
4 2 a1d φχτ
5 4 a1d φψχτ
6 1 5 3 ee33an φψχη