Metamath Proof Explorer


Theorem ee32an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32an.1 φψχθ
ee32an.2 φψτ
ee32an.3 θτη
Assertion ee32an φψχη

Proof

Step Hyp Ref Expression
1 ee32an.1 φψχθ
2 ee32an.2 φψτ
3 ee32an.3 θτη
4 2 a1dd φψχτ
5 1 4 3 ee33an φψχη