Metamath Proof Explorer


Theorem el2122old

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses el2122old.1 φψχ
el2122old.2 ψθ
el2122old.3 ψτ
el2122old.4 χθτη
Assertion el2122old φψη

Proof

Step Hyp Ref Expression
1 el2122old.1 φψχ
2 el2122old.2 ψθ
3 el2122old.3 ψτ
4 el2122old.4 χθτη
5 1 dfvd2ani φψχ
6 2 in1 ψθ
7 3 in1 ψτ
8 5 6 7 4 eel2122old φψη
9 8 dfvd2anir φψη