Metamath Proof Explorer


Theorem elabreximdv

Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses elabreximdv.1 A=Bχψ
elabreximdv.2 φAV
elabreximdv.3 φxCψ
Assertion elabreximdv φAy|xCy=Bχ

Proof

Step Hyp Ref Expression
1 elabreximdv.1 A=Bχψ
2 elabreximdv.2 φAV
3 elabreximdv.3 φxCψ
4 nfv xφ
5 nfv xχ
6 4 5 1 2 3 elabreximd φAy|xCy=Bχ