Metamath Proof Explorer


Theorem elfzlmr

Description: A member of a finite interval of integers is either its lower bound or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzlmr KMNK=MKM+1..^NK=N

Proof

Step Hyp Ref Expression
1 elfzuz2 KMNNM
2 fzpred NMMN=MM+1N
3 2 eleq2d NMKMNKMM+1N
4 elsni KMK=M
5 elfzr KM+1NKM+1..^NK=N
6 4 5 orim12i KMKM+1NK=MKM+1..^NK=N
7 elun KMM+1NKMKM+1N
8 3orass K=MKM+1..^NK=NK=MKM+1..^NK=N
9 6 7 8 3imtr4i KMM+1NK=MKM+1..^NK=N
10 3 9 syl6bi NMKMNK=MKM+1..^NK=N
11 1 10 mpcom KMNK=MKM+1..^NK=N