Metamath Proof Explorer


Theorem elfzr

Description: A member of a finite interval of integers is either a member of the corresponding half-open integer range or the upper bound of the interval. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfzr KMNKM..^NK=N

Proof

Step Hyp Ref Expression
1 elfzuz2 KMNNM
2 fzisfzounsn NMMN=M..^NN
3 2 eleq2d NMKMNKM..^NN
4 elun KM..^NNKM..^NKN
5 elsni KNK=N
6 5 orim2i KM..^NKNKM..^NK=N
7 4 6 sylbi KM..^NNKM..^NK=N
8 3 7 syl6bi NMKMNKM..^NK=N
9 1 8 mpcom KMNKM..^NK=N