Metamath Proof Explorer


Theorem elintdv

Description: Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses elintdv.1 φAV
elintdv.2 φxBAx
Assertion elintdv φAB

Proof

Step Hyp Ref Expression
1 elintdv.1 φAV
2 elintdv.2 φxBAx
3 nfv xφ
4 3 1 2 elintd φAB