Metamath Proof Explorer


Theorem entr2i

Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004)

Ref Expression
Hypotheses entr2i.1 AB
entr2i.2 BC
Assertion entr2i CA

Proof

Step Hyp Ref Expression
1 entr2i.1 AB
2 entr2i.2 BC
3 1 2 entri AC
4 3 ensymi CA