Metamath Proof Explorer


Theorem eqeqan2d

Description: Implication of introducing a new equality. (Contributed by Peter Mazsa, 17-Apr-2019)

Ref Expression
Hypothesis eqeqan2d.1 φC=D
Assertion eqeqan2d A=BφA=CB=D

Proof

Step Hyp Ref Expression
1 eqeqan2d.1 φC=D
2 eqeq12 A=BC=DA=CB=D
3 1 2 sylan2 A=BφA=CB=D