Metamath Proof Explorer
		
		
		
		Description:  Equality theorem for equivalence relation, inference version.
       (Contributed by Peter Mazsa, 23-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | eqvreleqi.1 |  | 
				
					|  | Assertion | eqvreleqi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqvreleqi.1 |  | 
						
							| 2 |  | eqvreleq |  | 
						
							| 3 | 1 2 | ax-mp |  |