Metamath Proof Explorer


Theorem eueqi

Description: There exists a unique set equal to a given set. Inference associated with euequ . See euequ in the case of a setvar. (Contributed by NM, 5-Apr-1995)

Ref Expression
Hypothesis eueqi.1 AV
Assertion eueqi ∃!xx=A

Proof

Step Hyp Ref Expression
1 eueqi.1 AV
2 eueq AV∃!xx=A
3 1 2 mpbi ∃!xx=A