Metamath Proof Explorer


Theorem ex-cnv

Description: Example for df-cnv . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-cnv 2639-1=6293

Proof

Step Hyp Ref Expression
1 cnvun 2639-1=26-139-1
2 2nn 2
3 2 elexi 2V
4 6nn 6
5 4 elexi 6V
6 3 5 cnvsn 26-1=62
7 3nn 3
8 7 elexi 3V
9 9nn 9
10 9 elexi 9V
11 8 10 cnvsn 39-1=93
12 6 11 uneq12i 26-139-1=6293
13 1 12 eqtri 2639-1=6293
14 df-pr 2639=2639
15 14 cnveqi 2639-1=2639-1
16 df-pr 6293=6293
17 13 15 16 3eqtr4i 2639-1=6293