Metamath Proof Explorer


Theorem excomw

Description: Weak version of excom and biconditional form of excomimw . Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypotheses excomw.1 x = w φ ψ
excomw.2 y = z φ χ
Assertion excomw x y φ y x φ

Proof

Step Hyp Ref Expression
1 excomw.1 x = w φ ψ
2 excomw.2 y = z φ χ
3 1 excomimw x y φ y x φ
4 2 excomimw y x φ x y φ
5 3 4 impbii x y φ y x φ