Metamath Proof Explorer


Theorem f1ocpbl

Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis f1ocpbl.f φF:V1-1 ontoX
Assertion f1ocpbl φAVBVCVDVFA=FCFB=FDFA+˙B=FC+˙D

Proof

Step Hyp Ref Expression
1 f1ocpbl.f φF:V1-1 ontoX
2 1 f1ocpbllem φAVBVCVDVFA=FCFB=FDA=CB=D
3 oveq12 A=CB=DA+˙B=C+˙D
4 3 fveq2d A=CB=DFA+˙B=FC+˙D
5 2 4 syl6bi φAVBVCVDVFA=FCFB=FDFA+˙B=FC+˙D