Metamath Proof Explorer


Theorem fmtno5faclem3

Description: Lemma 3 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem3 402025020+26801668=428826688

Proof

Step Hyp Ref Expression
1 4nn0 40
2 0nn0 00
3 1 2 deccl 400
4 2nn0 20
5 3 4 deccl 4020
6 5 2 deccl 40200
7 6 4 deccl 402020
8 5nn0 50
9 7 8 deccl 4020250
10 9 2 deccl 40202500
11 10 4 deccl 402025020
12 6nn0 60
13 4 12 deccl 260
14 8nn0 80
15 13 14 deccl 2680
16 15 2 deccl 26800
17 1nn0 10
18 16 17 deccl 268010
19 18 12 deccl 2680160
20 19 12 deccl 26801660
21 eqid 402025020=402025020
22 eqid 26801668=26801668
23 eqid 40202502=40202502
24 eqid 2680166=2680166
25 eqid 4020250=4020250
26 eqid 268016=268016
27 eqid 402025=402025
28 eqid 26801=26801
29 eqid 40202=40202
30 eqid 2680=2680
31 eqid 4020=4020
32 eqid 268=268
33 eqid 402=402
34 eqid 26=26
35 eqid 40=40
36 2cn 2
37 36 addlidi 0+2=2
38 1 2 4 35 37 decaddi 40+2=42
39 6cn 6
40 6p2e8 6+2=8
41 39 36 40 addcomli 2+6=8
42 3 4 4 12 33 34 38 41 decadd 402+26=428
43 8cn 8
44 43 addlidi 0+8=8
45 5 2 13 14 31 32 42 44 decadd 4020+268=4288
46 36 addridi 2+0=2
47 6 4 15 2 29 30 45 46 decadd 40202+2680=42882
48 5p1e6 5+1=6
49 7 8 16 17 27 28 47 48 decadd 402025+26801=428826
50 39 addlidi 0+6=6
51 9 2 18 12 25 26 49 50 decadd 4020250+268016=4288266
52 10 4 19 12 23 24 51 41 decadd 40202502+2680166=42882668
53 11 2 20 14 21 22 52 44 decadd 402025020+26801668=428826688