Description: Lemma 3 for fmtno5fac . (Contributed by AV, 22-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtno5faclem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 | |
|
2 | 0nn0 | |
|
3 | 1 2 | deccl | |
4 | 2nn0 | |
|
5 | 3 4 | deccl | |
6 | 5 2 | deccl | |
7 | 6 4 | deccl | |
8 | 5nn0 | |
|
9 | 7 8 | deccl | |
10 | 9 2 | deccl | |
11 | 10 4 | deccl | |
12 | 6nn0 | |
|
13 | 4 12 | deccl | |
14 | 8nn0 | |
|
15 | 13 14 | deccl | |
16 | 15 2 | deccl | |
17 | 1nn0 | |
|
18 | 16 17 | deccl | |
19 | 18 12 | deccl | |
20 | 19 12 | deccl | |
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | 2cn | |
|
37 | 36 | addlidi | |
38 | 1 2 4 35 37 | decaddi | |
39 | 6cn | |
|
40 | 6p2e8 | |
|
41 | 39 36 40 | addcomli | |
42 | 3 4 4 12 33 34 38 41 | decadd | |
43 | 8cn | |
|
44 | 43 | addlidi | |
45 | 5 2 13 14 31 32 42 44 | decadd | |
46 | 36 | addridi | |
47 | 6 4 15 2 29 30 45 46 | decadd | |
48 | 5p1e6 | |
|
49 | 7 8 16 17 27 28 47 48 | decadd | |
50 | 39 | addlidi | |
51 | 9 2 18 12 25 26 49 50 | decadd | |
52 | 10 4 19 12 23 24 51 41 | decadd | |
53 | 11 2 20 14 21 22 52 44 | decadd | |