Metamath Proof Explorer


Theorem frege7

Description: A closed form of syl6 . The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of Frege1879 p. 34. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege7 φ ψ χ θ φ χ θ ψ

Proof

Step Hyp Ref Expression
1 frege5 φ ψ θ φ θ ψ
2 frege6 φ ψ θ φ θ ψ φ ψ χ θ φ χ θ ψ
3 1 2 ax-mp φ ψ χ θ φ χ θ ψ