Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Propositions from _Begriffsschrift_
_Begriffsschrift_ Chapter III Properties hereditary in a sequence
frege73
Metamath Proof Explorer
Description: Lemma for frege87 . Proposition 73 of Frege1879 p. 59.
(Contributed by RP , 28-Mar-2020) (Revised by RP , 5-Jul-2020)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
frege73.x
⊢ X ∈ U
frege73.y
⊢ Y ∈ V
Assertion
frege73
⊢ R hereditary A → X ∈ A → R hereditary A → X R Y → Y ∈ A
Proof
Step
Hyp
Ref
Expression
1
frege73.x
⊢ X ∈ U
2
frege73.y
⊢ Y ∈ V
3
1 2
frege72
⊢ R hereditary A → X ∈ A → X R Y → Y ∈ A
4
ax-frege2
⊢ R hereditary A → X ∈ A → X R Y → Y ∈ A → R hereditary A → X ∈ A → R hereditary A → X R Y → Y ∈ A
5
3 4
ax-mp
⊢ R hereditary A → X ∈ A → R hereditary A → X R Y → Y ∈ A