Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Richard Penner  
				Propositions from _Begriffsschrift_  
				_Begriffsschrift_ Chapter III Properties hereditary in a sequence  
				frege73  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Lemma for frege87  .  Proposition 73 of Frege1879  p. 59.
       (Contributed by RP , 28-Mar-2020)   (Revised by RP , 5-Jul-2020) 
       (Proof modification is discouraged.) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						frege73.x  
						  ⊢   X  ∈  U         
					 
					
						 
						 
						frege73.y  
						  ⊢   Y  ∈  V         
					 
				
					 
					Assertion 
					frege73  
					   ⊢   R  hereditary  A   →   X  ∈  A       →   R  hereditary  A   →   X  R  Y   →   Y  ∈  A               
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							frege73.x  
							   ⊢   X  ∈  U         
						 
						
							2  
							
								
							 
							frege73.y  
							   ⊢   Y  ∈  V         
						 
						
							3  
							
								1  2 
							 
							frege72  
							    ⊢  R  hereditary  A   →    X  ∈  A    →   X  R  Y   →   Y  ∈  A               
						 
						
							4  
							
								
							 
							ax-frege2  
							    ⊢   R  hereditary  A   →    X  ∈  A    →   X  R  Y   →   Y  ∈  A             →    R  hereditary  A   →   X  ∈  A       →   R  hereditary  A   →   X  R  Y   →   Y  ∈  A                  
						 
						
							5  
							
								3  4 
							 
							ax-mp  
							    ⊢   R  hereditary  A   →   X  ∈  A       →   R  hereditary  A   →   X  R  Y   →   Y  ∈  A